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Multiple mutant clones in blood rarely coexist
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Leukemias arise due to mutations in the genome of hematopoietic (blood) cells. Hematopoiesis has a
multicompartment architecture, with cells exhibiting different rates of replication and differentiation. At the
root of this process, one finds a small number of stem cells, and hence the description of the mutation-selection
dynamics of blood cells calls for a stochastic approach. We use stochastic dynamics to investigate to which
extent acquired hematopoietic disorders are associated with mutations of single or multiple genes within
developing blood cells. Our analysis considers the appearance of mutations both in the stem cell compartment
as well as in more committed compartments. We conclude that in the absence of genomic instability, acquired
hematopoietic disorders due to mutations in multiple genes are most likely very rare events, as multiple
mutations typically require much longer development times compared to those associated with a single

mutation.
DOI: 10.1103/PhysRevE.77.021915

I. INTRODUCTION

The emergence of large multicellular organisms required
the development of systems for the mass transport of oxygen
and nutrients to cells far from exchange surfaces. The prob-
lem was solved by the evolution of the circulatory system
and hematopoiesis. Hematopoiesis is the process for the gen-
eration of all the cellular blood elements. A continuous sup-
ply of cells is necessary to compensate for the loss of cells
due to apoptotic senescence or migration out of the circulat-
ing compartment. Blood cell formation has at its root he-
matopoietic stem cells (HSC) that have the dual property of
self-renewal and the ability to differentiate into all types of
blood cells [1-3]. This hierarchical architecture protects the
organism against accumulation of mutations in the system
[4,5].

Unlike other forms of cancer, which have benefited from
the application of techniques developed in theoretical phys-
ics, in particular, those aspects related with the growth and
vascularization of solid tumors [6—11], blood cancers have
not been under such an intensive focus by physicists, despite
recent applications more related with cell replication and
proliferation [12,13]. This is likely related to the fact that,
despite the tremendous advances and improved techniques
achieved in the meantime, only recently a quantitative esti-
mate of the number of stem cells actively contributing to
hematopoiesis at any time in adult mammals has been pro-
vided [14]. In adult humans the number is very small
(=400) (being even smaller in young infants [15]), and each
cell replicates, on average, once per year. Both features lead
to an efficient mechanism which protects mammals against
hematopoietic stem cell disorders [16]. Such small numbers
and long time scales are to be contrasted with the fact that,
per day, =3.5X 10'! blood cells are routinely replaced in an
adult human. Only recently, a bridge between stem cells and
circulating blood cells has been established [17]. In this new
picture, hematopoiesis is described as a multicompartment
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model in which cells flow from upstream to downstream
compartments at increasing rates. Normal hematopoiesis cor-
responds to a stationary state of this multicompartment sys-
tem characterized by a conserved (on average) number of
cells in each compartment.

From a physics perspective, the hematopoietic system
constitutes a fascinating system, spanning 11 orders of mag-
nitude in size and over 4 orders of magnitude in time at the
cell level. In particular, the small number and slow replica-
tion rate of stem cells calls for a stochastic description of
their mutation-selection dynamics, justifying the well-known
hypothesis of the intrinsically stochastic nature of hemato-
poiesis [18,19].

Current understanding of acquired hematopoietic disor-
ders places their origin to mutations in the cellular genome,
which typically occur during cell division. Mutations can
lead to neoplastic (e.g., chronic myeloid leukemia, CML) or
non-neoplastic cell proliferation (e.g., paroxysmal nocturnal
hemoglobinuria, PNH). In the latter disorder, patients often
have more than one distinct group of mutated cells (clones),
each having an independent mutation in the same PIG-A
gene (which is specific for this disorder [20]). Usually, pa-
tients have a dominant clone and a smaller clone and it is
pertinent to ask what the cell of origin is for these two dis-
tinct mutations. Moreover, given the known mutation rate in
these cells [21], how likely is it that a given cell will acquire
a mutation in two distinct genes that could interact in this
disorder?

Here we investigate these issues by explicitly taking into
consideration the stochastic nature of hematopoiesis. Be-
cause not all hematopoietic disorders originate necessarily in
the stem cell compartment [22], we make use of the com-
partmental model of hematopoiesis recently developed to ad-
dress the aforementioned question for mutations occurring in
an arbitrary compartment, and to elucidate the probable cel-
lular origin of such multiple mutants. To this end we use
stochastic selection-mutation dynamics and provide a de-
tailed analysis of the processes and also of the nature of the
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FIG. 1. (Color online) Hierarchical organization of the hemato-
poeitic system. On the stem cell level, we have N, stem cells, which
can differentiate into all types of blood cells. After one differentia-
tion step, we have N, cells, which can either differentiate further or
divide symmetrically to increase the compartment size. We assume
that this process is the same in all downstream compartments.

approximations used in order to derive analytical results.
Furthermore, our analytical predictions are compared to full
stochastic simulations of our model system. A preliminary
account of some of these results has been published else-
where [23].

Our paper is organized as follows: In Sec. II we summa-
rize the multicompartment model of hematopoiesis on which
we build the present study; Sec. III investigates the origin of
multiple mutations, both for those originating in the stem cell
compartment, as well as for those originating in downstream
compartments. In Sec. III B we investigate the survival time
of mutations, whereas in Sec. IV we discuss the results and
offer conclusions.

II. MODEL OF THE HEMATOPOIETIC SYSTEM

We consider the following hierarchical model of blood
cell formation [17]: A compartment 0 with N, active stem
cells drives hematopoiesis (see Fig. 1). Within this stem cell
compartment, a Moran (stochastic birth-death) process with
constant population size is assumed [24]. Each active stem
cell replicates at the rate 7,. Replication may lead to two
differentiated cells ®— o +o, that move to compartment 1, or
to two identical cells (self-renewal) ¢ — ¢+ which remain
in compartment 0. To ensure that the stem cell population
remains constant, differentiation and self-renewal occur with
the same probability. The same quantitative outcome could
be produced by stem cells that divide asymmetrically and
produce (i) one cell that remains in the stem cell compart-
ment, and (ii) a differentiated cell that moves into compart-
ment 1. However, in that case there would be no dynamics at
the stem cell level.

We assume that the dynamics follows a similar mecha-
nism in all downstream compartments. With probability e,
any cell in compartment k produces two differentiated cells,
e—o+o, that move to the next (downstream) compartment
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k+1. With probability 1-g, the cell contributes to increase
the number of cells in compartment k by dividing without
differentiation, ®— ¢ +e. Thus, the number of cells in com-
partment k increases by influx from the upstream compart-
ment k—1 and self-renewal within the compartment. It de-
creases by differentiation into the next compartment k+ 1. In
compartment 1, cells divide at a rate 7, > 7,. The influx
from the stem cell compartment O is Ny7,. The outflow to
compartment 2 is N e#n,. Self-renewal changes the number
of cells at a rate N;(1—g)7,. Therefore, under stationary con-
ditions in the first compartment, we have 7,Ny+N;(1
—&)7,=N,&7,. In compartments k> 2, under stationary con-
ditions we have

2Ny + Ni(1 = &) = Nye 7. (1)

We assume that 7,/ 7;_; is constant, which leads to an
exponential increase of the replication rate. Similarly, the
number of cells in the compartments is assumed to increase
exponentially with k. In [17], we estimated

1
Ny= ZNO')/( and 7= 7, (2)

where Ny=400, 7,=1/year, £=0.85, 7=1.26, and y=" 5

~1.93. The parameters have been fixed using (i) data from
the expansion during polymorphonuclear leukocyte produc-
tion [25,26]; (ii) the number of active hematopoeitc stem
cells and average daily output of the blood system [14,27];
and (iii) the cell division rates of stem cells and granulocyte
precursors [27-29].

This process maintains the average number of cells in
each compartment. Consequently, in the following we will
profit from this conservation of cell number and concentrate
on those processes in which the number of mutant cells in-
creases or decreases. The dynamics of hematopoiesis in this
model and the compatibility of the model predictions with
the limited experimental data available is discussed in [17].

III. ORIGIN OF MULTIPLE MUTATIONS

Let us now consider the role of mutations in this system.
A mutation that appears at the level of the stem cells can
either be ultimately lost (if the mutant cells differentiate and
no mutant stem cell remains) or then end up taking over the
stem cell pool. Throughout this paper, we concentrate on
mutations that do not have a significant influence on the
reproduction properties of cells, i.e., we consider neutral mu-
tations only. Thus, in each compartment k, both wild-type
and mutated cells all replicate at the same rate 7. Because
we assume that cells never move upstream, i.e., from com-
partment k to k—1, new mutations originating in a down-
stream compartment k>0 are ultimately lost. The upstream
compartment k—1 consists of wild-type cells that do not
carry this new mutation and thus leads to a constant influx of
nonmutated cells into compartment k. This architecture leads
to an effective disadvantage of mutants arising in non-stem
cell compartments and constitutes a very efficient mecha-
nism of organism protection against tumor invasion [16].
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A. Multiple mutations at the stem cell level

First, we address the question of how likely it is that a
second independent mutation in the same gene appears at the
stem cell level before the number of cells with an initial
mutation reaches a certain threshold number M. Such a
threshold reflects the fact that a minimum number of mutated
cells must be present before diagnosis is possible [30-34].
The current definitions for diagnosis require a threshold of
20% of “blasts” in the bone marrow in the case of leukemia
or PIG-A mutated mononuclear cells in PNH. These thresh-
olds are expected to decrease as diagnostic technologies im-
prove. Nonetheless, current experimental and clinical diag-
nosis relies on such thresholds and we incorporate them to be
in compliance with current medical practice.

We consider a stem cell pool of N, cells. If the number of
mutant cells is j, then the probability that an additional neu-
tral mutant is produced in each time step is 77:%—:#0 The
first term is the probability that a normal cell differentiates

and the second term is the probability for self-renewal of a
mutant cell. Similarly, we have T;:ﬁONX,—;j Since T}*:TJ' the
probability to reach M mutant cells starting from j is simply
qb?” =j/M. The general equation for the conditional average
time to reach the threshold M starting from 1, given as Eq.

(A4) in the Appendix, simplifies to

' =MRy' - RY) - Ry, 3)
with
N M-1 M-1 1
RI=2D 3 — )

We have R} -RY =tZkM=_]1 Nl:]/fk. Now, we can reorganize the
equation for 7 by counting the terms in Ny/(Ny—i). From
the first term in Eq. (3) we have one such term. In the second
term ROM with the double sum we have a factor (M —i)/M in
front of the term Ny/(Ny—i). We can rearrange all the terms

from i=1 to i=M -1 in this way and obtain

M-1 .
M—i

=1 No—i

u_No
W=7 (5)
This is the average number of cell divisions per stem cell
until the initial mutant has produced M mutated cells within
the stem cell compartment. The maximum number of cell
divisions occurring in the mutant population is bounded by
IJIWNO. If the mutation rate per gene per cell division is u,
then the upper limit for the expected number of new second
mutants during the time until the first mutant reaches the
threshold M is given by

o M-1 .

M—i
F<u2 . 6
MMzNo—i (6)

For Ny=400, M=0.2N, and p= 1077, we obtain F<0.0085.
Here, we have used the estimate of the number of HSC N,
from [17] and the mutation rate from [35]. Since F<1, it is
unlikely that a second mutant appears at the stem cell level.
Recent experiments support this [36]. When the mutants
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FIG. 2. (Color online) Growth and extinction of a mutant clone
arising in compartment k=2. The upper part of the figure shows the
sizes of the first nine compartments. The average size of these com-
partments increases exponentially, starting from the stem cell com-
partment k=0 with Ny=400 cells. The lower part shows the number
of mutant cells, coded with the same colors. The typical develop-
ment of a mutant clone can be illustrated as follows: (A), a mutation
in one of the cells in compartment k=2 occurs during cell division.
(B), the mutant cell divides and produces two mutant cells in com-
partment k=3. Thus, no mutants are left in compartment k=2. (C),
the mutant cells in compartment k=3 vanish, after producing sev-
eral mutated cells in the downstream compartments. (D), the last
mutated cells in compartment k=8 differentiates into compartment
k=9 (not shown).

have a higher fitness than wild-type cells, the time until the
threshold is reached is smaller. Thus, in this case it is even
less likely that a second stem cell mutation appears during
this process.

So far, we have neglected the possibility of asymmetric
cell division in which a stem cell divides and produces one
stem cell and one differentiated cell. If we assume that 50%
of the cell divisions are asymmetric, then every second cell
division leaves the stem cell pool unchanged. Thus, the time
until the threshold M is reached doubles. In this case, one
also has to be careful if the mutation rate is the same for
asymmetric and symmetric cell divisions. Nonetheless, even
a factor 2 in F does not change the conclusion that a second
independent mutant is unlikely to occur at the level of
the stem cell compartment. The impact of asymmetric cell
divisions on stem cell behavior is discussed in more detail
in [37].

B. Survival time of downstream mutations

Now, let us calculate the average time a mutated cell,
originating in a downstream compartment, survives in that
compartment. This process is illustrated in Fig. 2. In each
time step, the number of mutants j in compartment k can
either increase by one, remain the same, or decrease by one.

Their number will increase if a mutant cell undergoes
self-renewal and produces a second mutant in compartment
k. This process occurs at rate 7, which is specific for each
compartment and increases exponentially with k [see Eq.
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(2)]. The probability to increase the number of mutant cells
in compartment k during a time interval 1/, is

r=(-oi. ™
k

Similarly, the number of mutant cells is decreased in a time
interval 1/ 7 if they differentiate and leave the compartment.
This process occurs with probability 7;=e3- [42]. Self-
renewal is less likely than differentiation [25,26,28], other-
wise the number of cells does not increase with increasing
compartment number. In our case, this means & >0.5. Thus,
in each downstream compartment mutant cells are effec-
tively at a disadvantage. To see this, we can compute the
effective relative fitness of mutated cells (wild-type cells, by
definition, have a relative fitness of 1) as

T8 1-¢

r=-L~=

TJ'T e

<. (8)

For normal hematopoiesis, we obtain r=0.19, which shows
that mutant cells are very disadvantageous. Consequently, it
is extremely unlikely that mutant cells reach a significant
fraction of the population in compartment k, i.e., j << N.

The fixation probability for j mutants with fitness r in a
population of size N; is

1—r7 j
N — J
¢t= =S N, ©

Given the very low probability of fixation, we concentrate on
the opposite fate, namely, extinction of the mutated cell lin-
eage. Since extinction is very likely, we calculate the average
time until it occurs.

The general equation for the extinction time can be found
in the Appendix. Using our approximations, the conditional
extinction time of a single mutant with relative fitness r is
given by

1+ Nk Ni-1

22—”—¢ . (10
r 1—¢1 =1 p=1 P

For the sake of simplicity, we measure the time scale in
generations (1 generation=N, cell divisions in the popula-
tion). Thus, we have to divide by the rate 7, to recover the
time in, e.g., days. Our aim is to find a simpler formulation
given that the mutant is disadvantageous, r<<1. First, we
note that ¢1]\sz Neif p is not too large. Both probabilities
are very small for disadvantageous mutants in large popula-
tions. From this, we obtain

1

1+r 22lrp_ (11)

l—lplp

Next, we use the definition of ¢11Vk and observe that for dis-
advantageous mutants with <1, we have N> 1. Thus, we
have @)k~ (r~'=1)r™. With this, we arrive at
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_ 2Nt !

> 2> L vt (12)

r =1 p=1 P

Because r” decreases rapidly with p, we can assume that the
second sum goes from 1 to N, —1 rather than only to /. Then,
we can exchange the sums and solve one of them,

1 - 2N Nyl 1 2Nt AN |
T > 2 rNk+p E E rNk+[7
™ p=1 P I=1 r p=1 P lL-r
(13)
With #7>> rNitP=1 | this can be well approximated by
N1

1+r 1

T~ > . (14)
r p=1 P

Next, we use the identity Il,rp= JoxP~'dx and change the order
of the sum and the integral. Since r<<1, we also have x<<1.
This yields

N1
it —dx. (15)

rJo p=1 01—

Neglecting the x™«! (since N, is large and x<1), we can
solve the integral and finally arrive at

1+r 1 1 1
T 1n< ): 1n< ) (16)
r 1-r 1-e \2e-1

In order to recover the time in, e.g., days, we have to divide
this by the cell division rate 7, which gives the natural time
scale of cell division in each compartment. Thus, the average
time 7, a mutant in compartment k survives in days is given

by
—k
7" 2e ( 1 )
T, =——In|l — . 17
k n28_1 (17)

Consequently, the average survival time decreases exponen-
tially with the compartment number, i.e., the more differen-
tiated the cell of the original mutation, the shorter the sur-
vival time (Fig. 3). Since mutations in more differentiated
cells also lead to smaller clones, we predict that smaller
clones will survive for shorter times [23]. Very recently, this
has been supported by experiments [38].

This approximation works well if r is not too close to 1
and if the population is large. For a biologically plausible
£=0.85, it is a good approximation even for small compart-
ment sizes [43].

IV. DISCUSSION

Our results provide important insights on the evolutionary
dynamics of mutations within hematopoiesis. With respect to
PNH, we can conclude that in the vast majority of patients,
only one of the clones originates within the SC pool. The
mutant SC population would be responsible for the larger of
the clones detectable in these patients. The other (smaller)
clone most likely originates in a cell downstream of the SC
pool. This clone will be expected to survive for a shorter
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FIG. 3. (Color online) Average time to extinction of the original
clone. The symbols show full stochastic simulations of a system
with a hierarchy of K=12 compartments. Our analytical approxima-
tion Eq. (17) (full line) agrees very well with these numerical re-
sults. For the simulation, we consider K competing rate processes.
For each compartment, we choose an exponentially distributed ran-
dom number with parameter N7, which corresponds to the wait-
ing time for the next cell division in each compartment. In the
compartment with the shortest waiting time, either self-renewal or
differentiation occurs. The inset shows the exponential probability
distribution of the extinction times of a mutant originating in com-
partment k=5 (averages over 10* extinction events).

time interval compared to the larger clone, although this can
be long due to stochastic effects, more so if the size of the
compartment is small as occurs in hypoplastic or aplastic
anemia [23].

There is experimental evidence that some forms of acute
leukemia can arise within the progenitor cell pool [22]. Ac-
cording to the present hierarchical model of hematopoiesis,
one expects these cells to contribute to hematopoiesis for
several months, being subsequently replaced. Consequently,
in order to account for the known persistence of acute leu-
kemic disorders, we conclude that such a mutant cell must
acquire the capability for long-term self-renewal early on, in
this way bypassing their own constraints related to the hier-
archical model. Indeed, if this does not happen, the mutant
population will be washed out in time, as it will appear as a
clone with reduced fitness. Moreover, our results suggest
that, if a hematopoietic neoplasm requires a combination of
multiple mutations, then it will most likely develop in the
presence of genomic instability. Indeed, genomic instability
may provide the pathway for the development of abnormal
mutation rates, which are necessary to explain the kinetics of
the disease within such a small pool of cells. In the specific
case of PNH, available data clearly rule out genomic insta-
bility [21], and consequently our results are expected to ap-
ply more accurately. In this context, our results also suggest
that it is unlikely that a SC with a mutation in the PIG-A
gene will acquire a mutation in a second gene with high
frequency. Hence, clonal expansion of the mutant population
is unlikely to be correlated with the presence of a second
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mutated gene (e.g., HMGA2 [39]) that would confer a fitness
advantage to the cells. In other words, clonal expansion in
most patients with PNH requires an alternative explanation.

Overall, our results show the power of a stochastic dy-
namics approach to biological systems encompassing simul-
taneously several orders of magnitude in what concerns size
and characteristic time scales. Our approach was motivated
by the physiology of the hematopoietic system and associ-
ated disorders, and benefits from a recent hierarchical model
in which the nature of stochastic effects assumes a prominent
role. The framework adopted, however, is very general and,
consequently, we expect it to be applicable to other biologi-
cal processes as well.
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APPENDIX: GENERAL FORMULATION FOR
CONDITIONAL AVERAGE FIXATION TIMES

We consider a birth-death process with transition prob-
abilities T— from state j to state j* 1. With probability 1
—T; T_ the system remains in state j. From the transition
probablhtles the conditional average time until a certain
other state is reached for the first time can be calculated. The
derivation of these average times shown here can be found
e.g., in [40,41].

1. Time until a threshold is reached

The conditional average time to reach threshold M > (as-
sociated with medical diagnosis of the disorder) starting
from i is given by

1 1
tﬁ”:(W—I)ROM—WRﬁw (A1)
Here, the probability to reach M is given by
-1 j
1+ I1 —ZL
I j=1k=1"'
¢ = M-1 j (A2)
1+ 2 H L
j=1 k=1 "'
Further, the quantity RM is defined as
M-1 /- M-1 M
1
RY==2 (H ) o (A3)
Nl i+1 \ j=1

PR
H<H%)

We note that we only consider average times here. It is
known that these times can have a very large variability, in
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particular, in the case considered here, where mutants are
neutral [30].

2. Extinction time

The conditional average time until ;i mutants are removed
from the system in a birth-death process is

1 1
t?=(—0—1)QN——QQ,-. (A4)

é; ¢

Here, one time unit is identical to one birth-death event. The

probability ¢?= 1- ¢§V for extinction of the mutants is given
by
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I+
ket 1
0 J=0 k=
d’i—l_N—l j (AS)
1T I
U
Jj=0 k=1
The function Q; is defined as
i-1 /1 I 0
1 T;
S(TE e
Nizi \j=i 77

)4
p=1 T
Jj=

J

In our case, this general equation can be simplified signifi-
cantly, as shown in the main text.
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